3.3.35 \(\int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx\) [235]

3.3.35.1 Optimal result
3.3.35.2 Mathematica [A] (verified)
3.3.35.3 Rubi [A] (verified)
3.3.35.4 Maple [A] (verified)
3.3.35.5 Fricas [A] (verification not implemented)
3.3.35.6 Sympy [F(-1)]
3.3.35.7 Maxima [B] (verification not implemented)
3.3.35.8 Giac [F]
3.3.35.9 Mupad [F(-1)]

3.3.35.1 Optimal result

Integrand size = 25, antiderivative size = 120 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\frac {19 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {9 a^3 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d} \]

output
19/4*a^(5/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+9/4*a^3* 
sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/2*a^2*sec(d*x+c)^(3 
/2)*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d
 
3.3.35.2 Mathematica [A] (verified)

Time = 0.48 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.88 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\frac {a^3 \left (-19 \arcsin \left (\sqrt {\sec (c+d x)}\right )+2 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+11 \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(5/2),x]
 
output
(a^3*(-19*ArcSin[Sqrt[Sec[c + d*x]]] + 2*Sqrt[1 - Sec[c + d*x]]*Sec[c + d* 
x]^(3/2) + 11*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])])*Tan[c + d*x])/(4* 
d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 
3.3.35.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.02, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4301, 27, 3042, 4504, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 4301

\(\displaystyle \frac {1}{2} a \int \frac {1}{2} \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a} (9 \sec (c+d x) a+5 a)dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} a \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a} (9 \sec (c+d x) a+5 a)dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (9 \csc \left (c+d x+\frac {\pi }{2}\right ) a+5 a\right )dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 4504

\(\displaystyle \frac {1}{4} a \left (\frac {19}{2} a \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {9 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} a \left (\frac {19}{2} a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {9 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {1}{4} a \left (\frac {9 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {19 a \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}+\frac {1}{4} a \left (\frac {19 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {9 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\)

input
Int[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(5/2),x]
 
output
(a^2*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(2*d) + (a* 
((19*a^(3/2)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + 
 (9*a^2*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4
 

3.3.35.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4301
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-b^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 
2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[b/(m + n - 1)   Int[(a + 
 b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n 
 - 4)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^ 
2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 
3.3.35.4 Maple [A] (verified)

Time = 1.81 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.65

method result size
default \(-\frac {a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\sec \left (d x +c \right )}\, \left (19 \cos \left (d x +c \right ) \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+19 \cos \left (d x +c \right ) \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-22 \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}-4 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \tan \left (d x +c \right )\right )}{8 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(198\)

input
int(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/8/d*a^2*(a*(1+sec(d*x+c)))^(1/2)*sec(d*x+c)^(1/2)/(cos(d*x+c)+1)/(-1/(c 
os(d*x+c)+1))^(1/2)*(19*cos(d*x+c)*arctan(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/( 
cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+19*cos(d*x+c)*arctan(1/2*(cos(d*x 
+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))-22*sin(d*x+c)* 
(-1/(cos(d*x+c)+1))^(1/2)-4*(-1/(cos(d*x+c)+1))^(1/2)*tan(d*x+c))
 
3.3.35.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 386, normalized size of antiderivative = 3.22 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\left [\frac {19 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (11 \, a^{2} \cos \left (d x + c\right ) + 2 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{16 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {19 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + a^{2} \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, {\left (11 \, a^{2} \cos \left (d x + c\right ) + 2 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{8 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[1/16*(19*(a^2*cos(d*x + c)^2 + a^2*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + 
 c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*s 
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8 
*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(11*a^2*cos(d*x + c) + 2*a^2)*s 
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d 
*cos(d*x + c)^2 + d*cos(d*x + c)), 1/8*(19*(a^2*cos(d*x + c)^2 + a^2*cos(d 
*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c) 
)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a 
)) + 2*(11*a^2*cos(d*x + c) + 2*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c 
))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]
 
3.3.35.6 Sympy [F(-1)]

Timed out. \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**(1/2)*(a+a*sec(d*x+c))**(5/2),x)
 
output
Timed out
 
3.3.35.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2826 vs. \(2 (100) = 200\).

Time = 3.18 (sec) , antiderivative size = 2826, normalized size of antiderivative = 23.55 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\text {Too large to display} \]

input
integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
-1/16*(88*sqrt(2)*a^2*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) - 56*sqrt(2)*a 
^2*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) - 28*sqrt(2)*a^2*sin(3/2*d*x + 3/ 
2*c) + 44*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) - 19*(a^2*log(2*cos(1/2*d*x + 1 
/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sq 
rt(2)*sin(1/2*d*x + 1/2*c) + 2) - a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin 
(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d 
*x + 1/2*c) + 2) + a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2* 
c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2 
) - a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2 
)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(4*d*x + 
4*c)^2 - 76*(a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 
 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a^ 
2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos( 
1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + a^2*log(2*cos(1/2 
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c 
) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a^2*log(2*cos(1/2*d*x + 1/2*c)^2 
 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*s 
in(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c)^2 - 19*a^2*log(2*cos(1/2*d*x + 
1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*s 
qrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 19*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 ...
 
3.3.35.8 Giac [F]

\[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sqrt {\sec \left (d x + c\right )} \,d x } \]

input
integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.35.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{5/2} \, dx=\int {\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}} \,d x \]

input
int((a + a/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(1/2),x)
 
output
int((a + a/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(1/2), x)